数学定理的教案

时间:2022-11-18 16:27:15 教案 投诉 投稿
  • 相关推荐

数学定理的教案

  在教学工作者实际的教学活动中,常常需要准备教案,教案有助于学生理解并掌握系统的知识。那么问题来了,教案应该怎么写?以下是小编为大家收集的数学定理的教案,仅供参考,欢迎大家阅读。

数学定理的教案

数学定理的教案1

  课题:

  勾股定理

  课型:

  新授课

  课时安排:

  1课时

  教学目的:

  一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。

  二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。

  教学重点:

  引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题

  教学难点:

  用面积法方法证明勾股定理

  课前准备:

  多媒体ppt,相关图片

  教学过程:

  (一)情境导入

  1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,20xx年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。

  2、多媒体课件演示flash小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?已知一直角三角形的两边,如何求第三边?学习了今天的这节课后,同学们就会有办法解决了。

  (二)学习新课问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。

  (三)巩固练习1、如果一个直角三角形的`两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?2、解决课程开始时提出的情境问题。

  (四)小结

  1、背景知识介绍①《周髀算径》中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律;②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是他的独创。

  2、通过这节课的学习,你会写方程了吗?你有什么收获和体会?

  (五)作业练习18.1中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。

数学定理的教案2

  一、教学目标

  1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.

  2.探究勾股定理的逆定理的证明方法.

  3.理解原命题、逆命题、逆定理的概念及关系.

  二、重点、难点

  1.重点:掌握勾股定理的逆定理及证明.

  2.难点:勾股定理的逆定理的证明.

  3.难点的突破方法:

  先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.

  为学生搭好台阶,扫清障碍.

  ⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.

  ⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.

  ⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.

  三、课堂引入

  创设情境:⑴怎样判定一个三角形是等腰三角形?

  ⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想.

  四、例习题分析

  例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?

  ⑴同旁内角互补,两条直线平行.

  ⑵如果两个实数的平方相等,那么两个实数平方相等.

  ⑶线段垂直平分线上的点到线段两端点的距离相等.

  ⑷直角三角形中30°角所对的直角边等于斜边的一半.

  分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用.

  ⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.

  解略.

  本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的关系.

  例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

  分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证.

  ⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的'三角形是直角三角形,从而将问题转化为如何判断一个角是直角.

  ⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.

  ⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.

  ⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.

  证明略.

  通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维.

  例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)

  求证:∠C=90°.

  分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.

  ⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.

  ⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证.

  本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.

数学定理的教案3

  教学目标:

  一知识技能

  1.理解勾股定理的逆定理的证明方法和证明过程;

  2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;

  二数学思考

  1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;

  2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.

  三解决问题

  通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.

  四情感态度

  1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;

  2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.

  教学重难点:

  一重点:勾股定理的逆定理及其应用.

  二难点:勾股定理的逆定理的证明.

  教学方法

  启发引导分组讨论合作交流等。

  教学媒体

  多媒体课件演示。

  教学过程:

  一复习孕新,引入课题

  问题:

  (1) 勾股定理的内容是什么?

  (2) 求以线段ab为直角边的直角三角形的斜边c的长:

  ① a=3,b=4

  ② a=2.5,b=6

  ③ a=4,b=7.5

  (3) 分别以上述abc为边的三角形的形状会是什么样的呢?

  二动手实践,检验推测

  1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?

  学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测.

  教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的.

  2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?

  3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?

  三探索归纳,证明猜想

  问题

  1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的.直角三角形之间有什么关系?你是怎样得到的?

  2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?

  3.如图18.2-2,若△ABC的三边长

  满足

  ,试证明△ABC是直角三角形,请简要地写出证明过程.

  教师提出问题,并适时诱导,指导学生完成问题3的证明.之后,归纳得出勾股定理的逆定理.

  四尝试运用,熟悉定理

  问题

  1例1:判断由线段

  组成的三角形是不是直角三角形:

  (1)

  (2)

  2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?

  教师巡视,了解学生对知识的掌握情况.

  特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题

  五类比模仿,巩固新知

  1.练习:练习题13.

  2.思考:习题18.2第5题.

  部分学生演板,剩余学生在课堂练习本上独立完成.

  小结梳理,内化新知

  六1.小结:教师引导学生回忆本节课所学的知识.

  2.作业:

  (1)必做题:习题18.2第1题(2)(4)和第3题;

  (2)选做题:习题18.2第46题.

数学定理的教案4

  一、教学目标

  通过对几种常见的勾股定理验证方法,进行分析和欣赏。理解数

  学知识之间的内在联系,体会数形结合的思想方法,进一步感悟勾股定理的文化价值。

  通过拼图活动,尝试验证勾股定理,培养学生的动手实践和创新能力。

  (3)让学生经历自主探究、合作交流、观察比较、计算推理、动手操作等过程,获得一些研究问题的方法,取得成功和克服困难的经验,培养学生良好的思维品质,增进他们数学学习的信心。

  二、教学的重、难点

  重点:探索和验证勾股定理的过程

  难点:

  (1)“数形结合”思想方法的理解和应用

  通过拼图,探求验证勾股定理的新方法

  三、学情分析

  八年级的学生已具备一定的生活经验,对新事物容易产生兴趣,动手实践能力也比较强,在班级上已初步形成合作交流,勇于探索与实践的良好班风,估计本节课的学习中学生能够在教师的引导和点拨下自主探索归纳勾股定理。

  四、教学程序分析

  (一)导入新课

  介绍勾股世界

  两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。

  (二)讲解新课

  1、探索活动一:

  观察下图,并回答问题:

  (1)观察图1

  正方形A中含有

  个小方格,即A的面积是

  个单位面积;

  正方形B中含有

  个小方格,即B的面积是

  个单位面积;

  正方形C中含有

  个小方格,即C的面积是

  个单位面积。

  (2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流。

  (3)请将上述结果填入下表,你能发现正方形A,B,C,的面积关系吗?

  A的面积

  (单位面积)

  B的面积

  (单位面积)

  C的面积

  (单位面积)

  图1

  9

  9

  18

  图2

  4

  4

  8

  2、探索活动二:

  (1)观察图3,图4

  并填写下表:

  A的面积

  (单位面积)

  B的面积

  (单位面积)

  C的面积

  (单位面积)

  图3

  16

  9

  25

  图4

  4

  9

  13

  你是怎样得到上面结果的'?与同伴交流。

  (2)三个正方形A,B,C的面积之间的关系?

  3、议一议(合作交流,验证发现)

  (1)你能发现直角三角形三边长度之间存在什么关系吗?

  勾股定理:如果直角三角形两直角边分别为a、b,斜边为c

  ,那么a2+b2=c2。

  即直角三角形两直角边的平方和等于斜边的平方。

  (2)我们怎么证明这个定理呢?

  教师指导第一种证明方法,学生合作探究第二种证明方法。

  可得:

  想一想:大正方形的面积该怎样表示?

  想一想:这四个直角三角形还能怎样拼?

  可得:

  4、例题分析

  如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?

  解:∵,

  ∴在中,

  ,根据勾股定理,

  ∴电线杆折断之前的高度=BC+AB=5米+13米=18米

  (三)课堂小结

  勾股定理从边的角度刻画了直角三角形的又一个特征.人类对勾股定理的研究已有近3000年的历史,在西方,勾股定理又被称为“毕达哥拉斯定理”、“百牛定理”、“驴桥定理”等等

  .

  (四)布置作业

  收集有关勾股定理的证明方法,下节课展示、交流.

  五、板书设计

  勾股定理的探索与证明

  做一做

  勾股定理

  议一议

  (直角三角形的直角边分别为a、b,斜边为c,则a2+b2=c2)

  六、课后反思

  《新课程标准》指出:“数学教学是数学活动的教学。”数学实验在现阶段的数学教学中还没有普及与推广,实际上,通过学生的合作探究、动手实践、归纳证明等活动,让数学课堂生动起来,也让学生感觉数学是可以动手做实验的,提高了学生学习数学的兴趣与激情。本节课,我充分利用学生动手能力强、表现欲高的特点,在充裕的时间里,放手让学生动手操作,自己归纳与分析。最后得出结论。我认为本节课是成功的,一方面体现了学生的主体地位,另一方面让实验走进了数学课堂,真正体现了实验的巨大作用。

数学定理的教案5

  [教学分析]

  勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

  本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

  [教学目标]

  一、知识与技能

  1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。

  2、应用勾股定理解决简单的实际问题

  3学会简单的合情推理与数学说理

  二、过程与方法

  引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

  三、情感与态度目标

  通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

  四、重点与难点

  1、探索和证明勾股定理

  2、熟练运用勾股定理

  [教学过程]

  一、创设情景,揭示课题

  1、教师展示图片并介绍第一情景

  以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

  周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”

  2、教师展示图片并介绍第二情景

  毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

  二、师生协作,探究问题

  1、现在请你也动手数一下格子,你能有什么发现吗?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

  3、你能得到什么结论吗?

  三、得出命题

  勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释:由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。

  四、勾股定理的证明

  赵爽弦图的证法(图2)

  第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。

  第二种方法:边长为的'正方形可以看作是由4个直角边分别为、,斜边为的

  角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。

  因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。

  这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

  五、应用举例,拓展训练,巩固反馈。

  勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。

  例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?

  六、归纳总结

  1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题

  2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。

  七、讨论交流

  让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。

  我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。

数学定理的教案6

 一、利用勾股定理进行计算

  1.求面积

  例1:如图1,在等腰△ABC中,腰长AB=10cm,底BC=16cm,试求这个三角形面积。

  析解:若能求出这个等腰三角形底边上的高,就可以求出这个三角形面积。而由等腰三角形"三线合一"性质,可联想作底边上的高AD,此时D也为底边的中点,这样在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以这个三角形面积为×BC×AD=×16×6=48cm2。

  2.求边长

  例2:如图2,在△ABC中,∠C=135?,BC=,AC=2,试求AB的长。

  析解:题中没有直角三角形,不能直接用勾股定理,可考虑过点B作BD⊥AC,交AC的延长线于D点,构成Rt△CBD和Rt△ABD。在Rt△CBD中,因为∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根据勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

  点评:这两道题有一个共同的特征,都没有现成的直角三角形,都是通过添加适当的辅助线,巧妙构造直角三角形,借助勾股定理来解决问题的,这种解决问题的`方法里蕴含着数学中很重要的转化思想,请同学们要留心。

  二、利用勾股定理的逆定理判断直角三角形

  例3:已知a,b,c为△ABC的三边长,且满足a2+b2+c2+338=10a+24b+26c。试判断△ABC的形状。

  析解:由于所给条件是关于a,b,c的一个等式,要判断△ABC的形状,设法求出式中的a,b,c的值或找出它们之间的关系(相等与否)等,因此考虑利用因式分解将所给式子进行变形。因为a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因为(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因为52+122=132,所以a2+b2=c2,即△ABC是直角三角形。

  点评:用代数方法来研究几何问题是勾股定理的逆定理的"数形结合思想"的重要体现。

  三、利用勾股定理说明线段平方和、差之间的关系

  例4:如图3,在△ABC中,∠C=90?,D是AC的中点,DE⊥AB于E点,试说明:BC2=BE2-AE2。

  析解:由于要说明的是线段平方差问题,故可考虑利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可连结BD来解决。因为∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中点,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

  点评:若所给题目的已知或结论中含有线段的平方和或平方差关系时,则可考虑构造直角三角形,利用勾股定理来解决问题。

数学定理的教案7

  向量证明正弦定理

  表述:设三面角∠P—ABC的三个面角∠BPC,∠CPA,∠APB所对的二面角依次为∠PA,∠PB,∠PC,则Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。

  目录

  1证明2全向量证明

  证明

  过A做OA⊥平面BPC于O。过O分别做OM⊥BP于M与ON⊥PC于N。连结AM、AN。显然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。另外,Sin∠CPA=AN/AP,Sin∠APB=AM/AP。则Sin∠PB/Sin∠CPA=AO×AP/(AM×AN)=Sin∠PC/Sin∠APB。同理可证Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得证三面角正弦定理。

  全向量证明

  如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°—A,j与向量CB的夹角为90°—C

  由图1,AC+CB=AB(向量符号打不出)

  在向量等式两边同乘向量j,得·

  j·AC+CB=j·AB

  ∴│j││AC│cos90°+│j││CB│cos(90°—C)

  =│j││AB│cos(90°—A)

  ∴asinC=csinA

  ∴a/sinA=c/sinC

  同理,过点C作与向量CB垂直的单位向量j,可得

  c/sinC=b/sinB

  ∴a/sinA=b/sinB=c/sinC

  2步骤1

  记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

  ∴a+b+c=0

  则i(a+b+c)

  =i·a+i·b+i·c

  =a·cos(180—(C—90))+b·0+c·cos(90—A)

  =—asinC+csinA=0

  接着得到正弦定理

  其他

  步骤2、

  在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

  CH=a·sinB

  CH=b·sinA

  ∴a·sinB=b·sinA

  得到a/sinA=b/sinB

  同理,在△ABC中,

  b/sinB=c/sinC

  步骤3、

  证明a/sinA=b/sinB=c/sinC=2R:

  任意三角形ABC,作ABC的外接圆O、

  作直径BD交⊙O于D、连接DA、

  因为直径所对的圆周角是直角,所以∠DAB=90度

  因为同弧所对的圆周角相等,所以∠D等于∠C、

  所以c/sinC=c/sinD=BD=2R

  类似可证其余两个等式。

  3用向量叉乘表示面积则s = CB叉乘CA = AC叉乘AB

  => absinC = bcsinA (这部可以直接出来哈哈,不过为了符合向量的做法)

  => a/sinA = c/sinC

  20xx—7—18 17:16 jinren92 |三级

  记向量i,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理其他步骤2、在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,

  4过三角形ABC的.顶点A作BC边上的高,垂足为D、(1)当D落在边BC上时,向量AB与向量AD的夹角为90°—B,向量AC与向量AD的夹角为90°—C,由于向量AB、向量AC在向量AD方向上的射影相等,有数量积的几何意义可知向量AB—向量AD=向量AC—向量AD即向量AB的绝对值—向量AD的绝对值—COS(90°—B)=向量的AC绝对值—向量AD的绝对值—cos(90°—C)所以csinB=bsinC即b/sinB=c/sinC(2)当D落在BC的延长线上时,同样可以证得

数学定理的教案8

  教学目标

  1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。

  2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。

  3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。

  教学重点

  了解勾股定理的由来,并能用它来解决一些简单的问题。

  教学难点

  勾股定理的探究以及推导过程。

  教学过程

  一、创设问题情景、导入新课

  首先出示:投影1(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的.贡献。

  出示课件观察后回答:

  1、观察图1—2,正方形A中有_______个小方格,即A的面积为______个单位。

  正方形B中有_______个小方格,即B的面积为______个单位。

  正方形C中有_______个小方格,即C的面积为______个单位。

  2、你是怎样得出上面的结果的?

  3、在学生交流回答的基础上教师进一步设问:图1—2中,A,B,C面积之间有什么关系?学生交流后得到结论:A+B=C。

  二、层层深入、探究新知

  1、做一做

  出示投影3(书中P3图1—3)

  提问:(1)图1—3中,A,B,C之间有什么关系?(2)从图1—2,1—3中你发现什么?

  学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。

  2、议一议

  图1—2、1—3中,你能用三角形的边长表示正方形的面积吗?

  (1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

  (2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?

  3、想一想

  我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?

  三、巩固练习。

  1、在图1—1的问题中,折断之前旗杆有多高?

  2、错例辨析:△ABC的两边为3和4,求第三边

  解:由于三角形的两边为3、4

  所以它的第三边的c应满足

  =25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并未交待C是斜边。

  综上所述这个题目条件不足,第三边无法求得

  四、课堂小结

  鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。

  五、布置作业

数学定理的教案9

  一、教学目标

  【知识与技能】

  理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。

  【过程与方法】

  经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。

  【情感、态度与价值观】

  体会事物之间的联系,感受几何的魅力。

  二、教学重难点

  【重点】勾股定理的'逆定理及其证明。

  【难点】勾股定理的逆定理的证明。

  三、教学过程

  (一)导入新课

  复习勾股定理,分清其题设和结论。

  提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。

  出示古埃及人利用等长的3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。

  (二)讲解新知

  请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确

  出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。

  学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。

数学定理的教案10

  复习第一步::

  勾股定理的有关计算

  例1:(20xx年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为.

  析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6

  勾股定理解实际问题

  例2.(20xx年吉林省中考试题)图①是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的高度为220cm.在无风的天气里,彩旗自然下垂,如图②.求彩旗下垂时最低处离地面的最小高度h.

  析解:彩旗自然下垂的长度就是矩形DCEF

  的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,

  得DE=h=220-150=70(cm)

  所以彩旗下垂时的最低处离地面的最小高度h为70cm

  与展开图有关的计算

  例3、(20xx年青岛市中考试题)如图,在棱长为1的正方体ABCD—A’B’C’D’的'表面上,求从顶点A到顶点C’的最短距离.

  析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的一部分,在矩形ACC’A’中,线段AC’是点A到点C’的最短距离.而在正方体中,线段AC’变成了折线,但长度没有改变,所以顶点A到顶点C’的最短距离就是在图2中线段AC’的长度.

  在矩形ACC’A’中,因为AC=2,CC’=1

  所以由勾股定理得AC’=.

  ∴从顶点A到顶点C’的最短距离为

  复习第二步:

  1.易错点:本节同学们的易错点是:在用勾股定理求第三边时,分不清直角三角形的斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的三角形是否为直角三角形.

  例4:在Rt△ABC中,a,b,c分别是三条边,∠B=90°,已知a=6,b=10,求边长c.

  错解:因为a=6,b=10,根据勾股定理得c=剖析:上面解法,由于审题不仔细,忽视了∠B=90°,这一条件而导致没有分清直角三角形的斜边和直角边,错把c当成了斜边.

  正解:因为a=6,b=10,根据勾股定理得,c=温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2

  例5:已知一个Rt△ABC的两边长分别为3和4,则第三边长的平方是

  错解:因为Rt△ABC的两边长分别为3和4,根据勾股定理得:第三边长的平方是32+42=25

  剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论.

  正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7.

  温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.

  例6:已知a,b,c为⊿ABC三边,a=6,b=8,bc,且c为整数,则c=.

  错解:由勾股定理得c=剖析:此题并没有告诉你⊿ABC为直角三角形

数学定理的教案11

  一、教学目标

  1、灵活应用勾股定理及逆定理解决实际问题、

  2、进一步加深性质定理与判定定理之间关系的认识、

  二、重点、难点

  1、重点:灵活应用勾股定理及逆定理解决实际问题、

  2、难点:灵活应用勾股定理及逆定理解决实际问题、

  3、难点的突破方法:

  三、课堂引入

  创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法、

  四、例习题分析

  例1(p83例2)

  分析:⑴了解方位角,及方位名词;

  ⑵依题意画出图形;

  ⑶依题意可得pr=12×1。5=18,pq=16×1。5=24,qr=30;

  ⑷因为242+182=302,pq2+pr2=qr2,根据勾股定理的逆定理,知∠qpr=90°;

  ⑸∠prs=∠qpr—∠qps=45°、

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识、

  例2(补充)一根30米长的.细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状、

  分析:⑴若判断三角形的形状,先求三角形的三边长;

  ⑵设未知数列方程,求出三角形的三边长5、12、13;

  ⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形

  本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识

数学定理的教案12

  高中数学正弦定理教案,一起拉看看吧。

  本节内容是正弦定理教学的第一节课,其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.

  本节课以及后面的解三角形中涉及到计算器的使用与近似计算,这是一种基本运算能力,学生基本上已经掌握了.若在解题中出现了错误,则应及时纠正,若没出现问题就顺其自然,不必花费过多的时间.

  本节可结合课件“正弦定理猜想与验证”学习正弦定理.

  三维目标

  1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法,会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.

  2.通过正弦定理的探究学习,培养学生探索数学规律的思维能力,培养学生用数学的方法去解决实际问题的能力.通过学生的积极参与和亲身实践,并成功解决实际问题,激发学生对数学学习的热情,培养学生独立思考和勇于探索的创新精神.

  重点难点

  教学重点:正弦定理的证明及其基本运用.

  教学难点:正弦定理的探索和证明;已知两边和其中一边的对角解三角形时,判断解的个数.

  课时安排

  1课时

  教学过程

  导入新课

  思路1.(特例引入)教师可先通过直角三角形的特殊性质引导学生推出正弦定理形式,如Rt△ABC中的边角关系,若∠C为直角,则有a=csinA,b=csinB,这两个等式间存在关系吗?学生可以得到asinA=bsinB,进一步提问,等式能否与边c和∠C建立联系?从而展开正弦定理的探究.

  思路2.(情境导入)如图,某农场为了及时发现火情,在林场中设立了两个观测点A和B,某日两个观测点的林场人员分别测到C处有火情发生.在A处测到火情在北偏西40°方向,而在B处测到火情在北偏西60°方向,已知B在A的正东方向10千米处.现在要确定火场C距A、B多远?将此问题转化为数学问题,即“在△ABC中,已知∠CAB=130°,∠CBA=30°,AB=10千米,求AC与BC的长.”这就是一个解三角形的问题.为此我们需要学习一些解三角形的必要知识,今天要探究的是解三角形的第一个重要定理——正弦定理,由此展开新课的`探究学习.

  推进新课

  新知探究

  提出问题

  1阅读本章引言,明确本章将学习哪些内容及本章将要解决哪些问题?

  2联想学习过的三角函数中的边角关系,能否得到直角三 角形中角与它所对的边之间在数量上有什么关系?

  3由2得到的数量关系式,对一般三角形是否仍然成立?

  4正弦定理的内容是什么,你能用文字语言叙述它吗?你能用哪些方法证明它?

  5什么叫做解三角形?

  6利用正弦定理可以解决一些怎样的三角形问题呢?

  活动:教师引导学生阅读本章引言,点出本章数学知识的某些重要的实际背景及其实际需要,使学生初步认识到学习解三角形知识的必要性.如教师可提出以下问题:怎样在航行途中测出海上两个岛屿之间的距离?怎样测出海上航行的轮船的航速和航向?怎样测量底部不可到达的建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度?这些实际问题的解决需要我们进一步学习任意三角形中边与角关系的有关知识.让学生明确本章将要学习正弦定理和余弦定理,并学习应用这两个定理解三角形及解决测量中的一些问题.

  关于任意三角形中大边对大角、小 边对小角的边角关系,教师引导学生探究其数量关系.先观察特殊的直角三角形.如下图,在Rt△ABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有ac=sinA,bc=sinB,又sinC=1=cc,则asinA=bsinB=csinC=c.从而在Rt△ABC中,asinA=bsinB=csinC.

  那么对于任意的三角形,以上关系式是否仍然成立呢?教师引导学生画图讨论分析.

  如下图,当△ABC是锐角三角形时,设边AB上的高是CD,根据任意角的三角函数的定义,有CD=asinB=bsinA,则asinA=bsinB.同理,可得csinC=bsinB.从而asinA=bsinB=csinC.

  (当△ABC是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成)

  通过上面的讨论和探究,我们知道在任意三角形中,上述等式都成立.教师点出这就是今天要学习的三角形中的重要定理——正弦定理.

  正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

  asinA=bsinB=csinC

  上述的探究过程就是正弦定理的证明方法,即分直角三角形、锐角三角形、钝角三角形三种情况进行证明.教师提醒学生要掌握这种由特殊到一般的分类证明思想,同时点拨学生观察正弦定理的特征.它指出了任意三角形中,各边与其对应角的正弦之间的一个关系式.正弦定理的重要性在于它非常好地描述了任意三角形中边与角的一种数量关系;描述了任意三角形中大边对大角的一种准确的数量关系.因为如果∠A<∠B,由三角形性质,得a<b.当∠A、∠B都是锐角,由正弦函数在区间(0,π2)上的单调性,可知sinA<sinB.当∠A是锐角,∠B是钝角时,由于∠A+∠B<π,因此∠B<π-∠A,由正弦函数在区间(π2,π)上的单调性,可知sinB>sin(π-A)=sinA,所以仍有sinA<sinB.

  正弦定理的证明方法很多,除了上述的证明方法以外,教师鼓励学生课下进一步探究正弦定理的其他证明方法.

  讨论结果:

  (1)~(4)略.

  (5)已知三角形的几个元素(把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素)求其他元素的过程叫做解三角形.

  (6)应用正弦定理可解决两类解三角形问题:①已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出三角形的另两边,即“两角一边问题”.这类问题的解是唯一的.②已知三 角形的任意两边与其中一边的对角,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和 角,即“两边一对角问题”.这类问题的答案有时不是唯一的,需根据实际情况分类讨论.

  应用示例

  例1在△ABC中,已知∠A=32.0°,∠B=81.8°,a=42.9 cm,解此三角形.

  活动:解三角形就是已知三角形的某些边和角,求其他的边和角的过程,在本例中就是求解∠C,b,c.

  此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边b,若求边c,则先求∠C,再利用正弦定理即可.

  解:根据三角形内角和定理,得

  ∠C=180°-(∠A+∠B)=180°-(32.0°+81.8°)=66.2°.

  根据正弦定理,得

  b=asinBsinA=42.9sin81.8°sin32.0°≈80.1(cm);

  c=asinCsinA=42.9sin66.2°sin32.0°≈74.1(cm).

  点评:(1)此类问题结果为唯一解,学生较易掌握,如果已知两角及两角所夹的边,也是先利用三角形内角和定理180°求出第三个角,再利用正弦定理.

数学定理的教案13

  一、教材分析

  “解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

  二、学情分析

  我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

  三、教学目标

  1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

  过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

  情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的`普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

  2、教学重点、难点

  教学重点:正弦定理的发现与证明;正弦定理的简单应用。

  教学难点:正弦定理证明及应用。

  四、教学方法与手段

  为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

  五、教学过程

  为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

  (一)创设情景,揭示课题

  问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

  1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

  问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

  [设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

  (二)特殊入手,发现规律

  问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

  引导启发学生发现特殊情形下的正弦定理。

  (三)类比归纳,严格证明

  问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

  [设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

数学定理的教案14

  一、学生知识状况分析

  学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。

  活动经验基础: 本节课主要采取的 活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.

  二、教学任务分析

  上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:

  知识与技能:(1)掌握三角形内角和定理的证明及简单应用。

  (2)灵活运用三角形内角和定理解决相关问题。

  数学能力:用多种方法证明三角形定理,培养一题多解的能力。

  情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化 的理性作用.

  三、教学过程分析

  本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结

  第一环节:情境引入

  活动内容:(1)用折纸的方法验证三角形内角和定理.

  实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果

  (1) (2) (3) (4)

  试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?

  (2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

  试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?

  活动目的:

  对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.

  教学效果:

  说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。

  第二环节:探索新知

  活动内容:

  ① 用严谨的证明来论证三角形内 角和定理.

  ② 看哪个同学想的方法最多?

  方法一:过A点作DE∥BC

  ∵DE∥BC

  DAB=B,EAC=C(两直线平行,内错角相等)

  ∵DAB+BAC+EAC=180

  BAC+ C=180(等量代换)

  方法二:作BC的延长线CD,过点C作射线CE∥BA.

  ∵CE∥BA

  ECD(两直线平行,同位角相等)

  ACE(两直线平行,内错角相等)

  ∵BCA+ACE+ECD=180

  B+ACB=180(等量代换)

  活动目的':

  用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养 学生的逻辑推理能力。

  教学效果:

  添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到 证明的目的.

  第三环节:反馈练习

  活动内容:

  (1)△ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?

  (2)△ABC中 ,C=90,A=30,B=?

  (3)A=50,C,则△ABC中B=?

  (4)三角形的三个内角中,只能有____个直角或____个钝角.

  (5)任何一个三角形中,至少有____个锐角;至多有____个锐角.

  (6)三角形中三角之比 为1∶2∶3,则三个角各为多少度?

  (7)已知:△ABC中,B=2A。

  (a)求B的度数;

  (b)若BD是AC边上的高,求 DBC的度数?

  活动目的:

  通过学生的 反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.

  教学效果:

  学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。

  第四环节:课堂小结

  活动内容:

  ① 证明三角形内角和定理有哪几种方法?

  ② 辅助线的作法技巧.

  ③ 三 角形内角和定理的简单应用.

  活动目的:

  复习巩固本课知识,提高学生的掌握程度.

  教学效果:

  学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.

  课后练习:课本第239页随堂练习;第241页习题6.6第1,2,3题

  四、教学反思

  三角形的有关知识是空间与图形中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:

  (1) 通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。

  (2) 充分展示学生的个性,体现学生是学习的主人这一主题。

  (3) 添加辅助线是教学中的一个难点, 如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。

数学定理的教案15

  教学目的:

  1、知识与技能:了解命题的概念,并能区分命题的题设和结论.

  2、经历判断命题真假的过程,对命题的真假有一个初步的了解.

  3、初步培养学生不同几何语言相互转化的能力.

  重点:命题的概念和区分命题的题设与结论.

  难点:区分命题的题设和结论.

  教学过程

  一、创设情境复习导入

  教师出示下列问题:

  1.平行线的判定方法有哪些?

  2.平行线的性质有哪些.

  学生能积极的思考教师所出示的各个问题复习巩固有关的知识点为本节课的学习打下良好的基础.(注意:平行线的判定方法三种,另外还有平行公理的推论)

  二、尝试活动探索新知

  (1)教师给出下列语句

  ①如果两条直线都与第三条直线平行,那么这条直线也互相平行;

  ②等式两边都加同一个数,结果仍是等式;

  ③对顶角相等;

  ④如果两条直线不平行,那么同位角不相等.

  学生学生能由教师的引导分析每个语句的特点.思考:你能说一说这4个语句有什么共同点吗?并能耐总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某件事作出判断的。

  (2)教师给出命题的定义

  判断一件事情的语句,叫做命题.

  (3)命题的组成.

  ①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.

  ②命题的'形成,可以写成“如果……,那么……”的形式。

  真命题与假命题:

  教师出示问题:

  如果两个角相等,那么它们是对顶角.

  如果a>b.b>c那么a=b

  如果两个角互补,那么它们是邻补角.

  三、尝试反馈理解新知

  明确命题有正确与错误之分:

  命题的正确性是我们经过推理证实的,这样得到的真命题叫做定理,作为真命题,定理也可以作为继续推理的依据.

  1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么?

  2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.

  四、总结拓展:教师引导学生完成本节课的小结,强调重要的知识点.

  五、布置作业:习题5.3第11题.

【数学定理的教案】相关文章:

勾股定理教案02-11

余弦定理教案01-11

《勾股定理应用》教案08-28

勾股定理应用优秀教案08-26

《正弦定理和余弦定理》复习课教学设计12-03

《正弦定理、余弦定理》教学设计范文(通用10篇)05-10

正弦定理的教学反思07-21

《勾股定理》教学设计04-28

八年级数学勾股定理教学设计05-09