- 解方程教案 推荐度:
- 初中数学解方程教案 推荐度:
- 相关推荐
解方程教案(锦集15篇)
作为一名专为他人授业解惑的人民教师,就难以避免地要准备教案,教案是教学活动的依据,有着重要的地位。来参考自己需要的教案吧!下面是小编收集整理的解方程教案,欢迎大家分享。
解方程教案1
知识网络
列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。
一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。
设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。
重点难点
列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。
学法指导
(1)列方程解应用题的一般步骤是:
1)弄清题意,找出已知条件和所求问题;
2)依题意确定等量关系,设未知数x;
3)根据等量关系列出方程;
4)解方程;
5)检验,写出答案。
(2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。
(3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。
经典例题
例1 某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。
思路剖析
如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦 如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程 解 答
设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。
答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。
例2 牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?
思路剖析
这是以前接触过的牛吃草问题,它的算术解法步骤较多,这里用列方程的方法来解决。
设供25头牛可吃x天。
本题的等量关系比较隐蔽,读一下问题:每天牧草都匀速生长,草生长的速度是固定的,这就可以发掘出等量关系,如从供10头牛吃20天表达出生长速度,再从供15头牛吃10天表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。
解 答
设供25头牛可吃x天。
由:草的总量=每头牛每天吃的草头数天数
=原有的草+新生长的草
原有的草=每头牛每天吃的草头数天数-新生长的草
新生长的草=草的生长速度天数
考虑已知条件,有
原有的草=每头牛每天吃的草1020-草的生长速度20
原有的草=每头牛每天吃的草1510-草的生长速度10
所以:原有的草=每头牛每天吃的草200-草的生长速度20
原有的草=每头牛每天吃的草150-草的生长速度10
即:每头牛每天吃的草200-草的生长速度20
=每头牛每天吃的草150-草的生长速度10
每头牛每天吃的草200草的生长速度20+每头牛每天吃的草150-草的生长速度10
每头牛每天吃的草200-每头牛每天吃的草150
=草的生长速度20-草的生长速度10
每头牛每天吃的草(200-150)=草的生长速度(20-10)
所以:每头牛每天吃的`草50=草的生长速度10
每头牛每天吃的草5=草的生长速度
因此,设每头牛每天吃的草为1,则草的生长速度为5。
由:原有的草=每头牛每天吃的草25x-草的生长速度x
原有的草=每头牛每天吃的草1020-草的生长速度20
有:每头牛每天吃的草25x-草的生长速度x
=每头牛每天吃的草1020-草的生长速度20
所以:125x-5x=11020-520
解这个方程
25x-5x=1020-520
20x=100
x=5(天)
答:可供25头牛吃5天。
例3 某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?
解 答
设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程
解法一:用直接设元法。
80x-40=(30x+40)2
80x-40=60x+80
20x=120
x=6(座)
解法二:用间接设元法。
设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。
(x-40)30=(2x+40)80
(x-40)80=(2x+40)30
80x-3200=60x+1200
20x=4400
x=220(米3)
由灰砖有220米3,推知修建住宅(220-40)30=6(座)。
同理,也可设有红砖x米3。留给同学们练习。
答:计划修建住宅6座。
例4 两个数的和是100,差是8,求这两个数。
思路剖析
这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。
解 答
解法一:设较小的数为x,那么较大的数为x+8,根据题意它们的和是100,可以得到:
x+8+x=100
解这个方程:2x=100-8
所以 x=46
所以 较大的数是 46+8=54
也可以设较小的数为x,较大的数为100-x,根据它们的差是8列方程得:
100-x-x=8
所以 x=46
所以 较大的数为100-46=54
答:这两个数是46与54。
解方程教案2
教学内容:
教科书58页例1。
教学目标:
1、结合图例,根据等式不变的性质,学会解简易方程。
2、掌握解方程的书写格式,并能用代入法进行检验。
3、提高学生的分析、理解能力,同时渗透函数的思想。
教学重点:
掌握解方程的方法和书写格式。
教学重点:
掌握解方程的方法。
教具准备:
可见、平台
教学过程:
一、复习。
1、提问:什么是方程?
2、判断下面各式哪些是方程?
a+24=734 X =36+1723÷a>43X +843 X +4y=848÷a=9
3、后面括号中哪个x的值是方程的解?
(1)X +42=98 (X =57,X =135)
(2)5.2- X =0.7 (X =4.5,X =8.8)
4、等式的性质是什么?(方程两边同时加减或乘除同一个数(0除外),左右两边仍然相等)
5、导入:今天,我们就利用等式的`性质来解方程。
板书课题:解方程
二、新课学习。
1、出示例1的图
(1)问:你们猜盒子里装的是什么?(皮球)问:从图中你获取了哪些信息?
(盒子里有X个皮球和外面3个皮球等于9个皮球)
(2)请学生根据关系列出式子。
板书:X +3=9
(3)问:怎样解这个方程呢?(出示课件)
(4)师:我们可以用天平保持平衡的道理来帮助解方程。
(5)看课件演示
问:要使天平左边只剩下“X”而还能保持平衡,该怎么办呢?
(6)学生思考后回答。
(7)演示课件
教师一边演示一边在黑板写出:X +3-3=9-3
(8)师生小结:方程两边同时减去同一个数(3)
(9)问:为什么要减3,减2可以吗?学生回答
(10)天平两边同时减去同一个数,天平两边还平衡吗?
出示课件,学生回答:平衡
师板书:左右两边仍然相等
(11)那么天平左边剩下X右边剩下6个球,X =6是不是正确的答案呢?我们来验算一下(师在黑板板演验算过程)
2、小结:今天,我们利用了什么知识来解方程?(等式的性质)在解方程
的过程中我们还要注意些什么呢?(我们要注意书写格式,等号要对齐,注意:x=6表示一个数值,后面不能带单位,解方程要用代入法检验一下方程的解是否正确。)
3、质疑:看书58页,还有什么不明白的地方?
(通过练习测试学生的掌握程度)
三、练习。
1、出示课件:第59页做一做的第一题中的第一个图:列方程解答并验算
(1)学生独立完成,师巡视。
(2)指名学生板演,并说说如何解答的?
2、加法会解了,那么减法又怎样做呢?我们来挑战一下。
(1)课件出示:x-2=15 小组讨论完成
(2)投影学生的计算结果,让学生说出解题思路。
3、我最棒
(1)我是小法官
A:x+1.2=5.7 B:x-1.8=4 x+1.2-1.2=5.7-1.2 解:x-1.8+1.8=4+4 x=4.5 x=8
4、找朋友
8+ X =16 X =3
X -6=17 X =9.6
X +2.1=5.1 X =8
X -3.2=6.4 X =23
5、拓展
X -0.5=3+1.9
四、作业
数学课本63页练习十一的第5题中的前四题。
解方程教案3
教学内容:
教科书第2~4页的例3、例4和试一试,完成练一练和练习一的第3~5题。
教学目标:
1.使学生在具体的情境中初步理解等式的两边同时加上或减去同一个数,所得的结果仍然是等式,会用等式的性质解简单的方程。
2.使学生在观察、分析、抽象、概括和交流的过程中,积累数学活动的经验,培养独立思考,主动与他人合作交流习惯。
教学重点:
理解等式的两边同时加上或减去同一个数,所得结果仍然是等式。
教学难点:
会用等式的这一性质解简单的方程。
教学过程:
一、教学例3
1.谈话:我们已经认识了等式和方程,今天这节课,将继续学习与等式、方程有关的知识。请同学们看这里的.天平图,你能根据图意写出一个等式吗?
提问:现在的天平是平衡的,如果将天平的一边加上一个10克的砝码,这时天平会怎样?
谈话:现在天平恢复平衡了,你能在上面这个等式的基础上,再写一个等式表示现在天平两边物体质量的关系吗?
2.出示第二组天平图,说说天平两边物体的质量是怎样变化的,你能分别列出两个等式吗?
3.出示第3、4组天平图,提问:你能分别说说这两组天平两边物体的质量各是怎样变化的吗?
谈话:怎样用等式分别表示天平两边物体变化前的关系和变化后的关系?
启发:这两组等式是怎样变化的?她们的变化有什么共同特点?
4.提问:刚才我们通过观察天平图,得到了两个结论,你能用一句话合起来说一说吗?
5.做练一练的第1题
二、教学例4
1.出示例4的天平图,你能根据天平两边物体质量相等关系列出方程吗?
2.讲解:要求出方程中未知数的值,要先写解,要注意把等号对齐。
3.完成试一试
4.完成练一练
提问:解这里的方程时,分别怎样做就可以使方程左边只剩下x了。
三、巩固练习
1. 做练习一的第3题
2.做练习一的第4题
3.做练习一的第5题
四、全课小结
提问:今天这节课我们学习了什么内容?你有哪些收获?还有什么不懂的问题?
五、作业
完成补充习题。
板书设计:
等式性质和解方程
等式的性质 解方程
50=50 50+10=50+10 解: X+10=50
x+a=50+a 50+a-a =50+a-a X-10=50-10
X=40
检验:把x=40代入原方程,看看左右两边是不是相等。40+10=50,x=40是正确的。
解方程教案4
教案设计
设计说明
本节课是在学生学习了用字母表示数和认识方程的基础上进行教学的。学生已经通过天平初步掌握了有关等式、方程的意义,基于上述情况,本节教学设计关注了下面两点:
1.关注教具的合理运用。
本节课再次利用直观教具——天平,使学生深入了解等式的性质,并在理解的基础上解简单的方程。
2.注重动手操作,让学生在实践中学习。
在教学中,注重为学生提供动手操作、实践以及小组合作、讨论的机会,并且在教学的过程中重点突出了“等式的性质”,使大部分学生都能灵活地运用此规律来解方程,充分体现了“课堂学习要以学生为主”的这一教学理念。
课前准备
教师准备 PPT课件 天平
教学过程
⊙复习旧知,导入新课
1.看图列方程。
2.在括号里填上合适的数。
6+8=14 2×6=12
6+8-8=14-( )
2×6×3=12×( )
6+8+2=14+( )
2×6÷3=12÷( )
说说你为什么这么填。
今天,我们就用这个道理来学习解方程![板书课题:解方程(一)]
设计意图:从学生的经验出发,通过复习,使学生的兴趣和思维进入到课堂学习中。
⊙操作观察,感知规律
(课件出示摆有砝码的天平)
实验操作、发现规律。
(1)师:今天我们要在天平上做游戏,通过游戏我们将发现一些规律。现在我在天平的左侧放一个5克砝码,右侧也放一个5克砝码,这时天平的指针指向中间,说明什么?用等式怎样表示?
说明天平平衡,等式:5=5。
(2)如果在天平的左侧再加上一个2克砝码,天平会怎么样?要使天平恢复平衡,可以怎么办?你还能用一个等式来表示吗?
学生仔细观察,说出自己看到的现象,写出等式:5+2=5+2。
(3)在天平左侧放的砝码的质量用x表示,右侧放一个10克砝码,天平两侧平衡。用等式表示天平两侧平衡的`状况。(学生在纸上写一写)
学生汇报。
(4)如果在天平的左侧再加上一个5克砝码,右侧也加上一个5克砝码,你们发现了什么?用一个方程来表示。(学生在纸上写一写,指名汇报)
(5)如果在两侧都加上一个10克砝码呢?会出现什么情况?怎样用方程表示?如果都加上一个12克砝码呢?
(6)通过上面的游戏,你发现了什么?
(同桌之间互相研究一下)
(7)引导学生发现:等式的两边都加上同一个数,等式仍然成立。
设计意图:在游戏中,利用课件演示,不仅让学生清楚地看到天平两侧的变化,更加深了学生对“等式”的理解,还能帮助学生体会等式变化的规律,为学生更好地总结规律埋下伏笔。
解方程教案5
教学内容:
义务教育人教版数学五年级上册67页内容。
教学目标:
知识目标:
1、通过演示操作理解天平平衡的原理。
2、初步理解方程的解和解方程的含义。
3、会检验一个具体的值是不是方程的解,掌握检验的格式。
能力目标:
1、提高学生的比较、分析的能力;
2、培养学生的合作交流的意识。
情感目标:
1、感受方程与现实生活的联系。
2、愿意与别人合作交流。
教学重点:
理解方程的解和解方程的含义,会检验方程的解。
教学难点:
利用天平平衡的原理来检验方程的解。
关键:
天平与方程的联系。
教具:
课件
教学过程:
一、游戏铺垫,引出课题(出示课件)
师:明明周末在超市玩起了称糖果的称,我们一起合作使称保持平衡!
师:同学们反映真敏捷,能通过观察马上想出使天平保持平衡的策略。
生:从中你有什么想说的?或者你联想到了什么?
生:只要两边都拿掉或增加相同数量的糖果,就能保持平衡;让我想到了等式的性质(全班一起口答:等式两边加上或减去同一个数,左右两边任然相等;等式两边乘同一个数,或除以同一个部位0的数,左右两边任然相等)(板书“等式性质”)
师过渡:是的,知识就是这样被有心人所发现的。
二、探究新知
师:这里有个纸箱里面装着一些足球,你猜会有几个呢?(课件逐步出示)
再给你点信息,这幅图谁能用一个方程来表示。
生列方程,并说说你是怎么想的。
1、解方程
师:在这个方程中,x的值是多少呢?(学生思考,小范围交流)
汇报预设:①因为9-3=6②因为6+3=9所以x的值为6所以x的值为6(多少)
师引导:当然,我知道这么简单的问题是难不住大家的,但是我们的思考不能停止,从今天开始我们将学习怎样利用天平保持平衡的原理来寻求x的值,这种思考的方法到初中遇上更加复杂的方程时仍然会用到。
师:现在我们就将X+3=9这个方程转换到天平上来?(黑板贴图)
师:球在天平不好摆,我们可以用方块来代替它。
自主尝试:看着天平,如何去寻求x的值?
请用笔记录下你的想法。
组织好语言上台汇报你的想法。
教师统一书写:
师介绍:求解x的过程我们在最前面写“解”字。(板书写“解”字)
追问:两边都拿掉3个,天平还能平衡吗,两边还相等吗?(贴图展示)
为什么要减3个?(可以方程的一边只剩x,就可以知道x=?)(再叫2-3个)
生活动:我们看着板书来说说是怎么成功得到x的值,每一步的依据是什么。(2-3个)
你学会了吗?赶紧和你的同桌说一说方法。
2、强调格式:
师:这个求解的过程和以前递等式有什么区别或相同的地方?
生:等号对齐;等号两边都要写;最前面要写解字
3、练习一:
师:按照大家借助天平运用等式性质的想法,就是说当我们遇到方程33+x=65你也能求解?解:33+x○()=65○()
x=()那么x-4.5=10呢?(学生独立尝试,一个学生板演)
生完成填空和独立节解方程。(课件中校对)
4、介绍概念:像这些(课件中圈出来),使方程左右两边相等的未知数的.值,
叫“方程的解”;举例:x=3是方程x+3=9的解??
而求方程的解的过程,我们叫“解方程”(板书)
这些知识在数中有介绍,我们找到划一划读一
读。(看书)
两个词都有解字,有什么区别呢?(“方程的解”中的“解”是名词,它指能使方程左右两边相等的未知数的值,是一个数值;“解方程”中的“解”是动词,它指求方程解的过程,是一个演算的过程.)
5、验算:
师:刚才我们解出来x的值是不是正确的答案呢?你打算怎么检验?
生:放进去计算一下。
师:大家心里都有了想法,但方程的检验也是有一定格式的,下面我们到书本中来学习一下。生自学书本后回答:根据等式性质,把x=6代入方程,看方程左右两边是否相等。生活动:尝试验算一个方程的解,另一个放心里代入验算。
6、小结
师:你学会了吗?你会解怎样的方程了?(含加法或减法)
解方程的步骤?(结合板书和课件)
生:解方程的步骤:
a)先写“解:”。
b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。 c)求出X的值。
d)验算。
四、巩固练习
练习二:解方程比赛(书P67)
(1)100+x=250(2)x+12=31※(3) x -63=36
练习三:我是小法官:1.X=10是方程5+x=15的解()。
2.X=10是方程x-5=15的解()。
3. X=3是方程5x=15的解()。
4.下面两位同学谁对谁错?
X-1.2=4 X+2.4=4.6
解:X-1.2+1.2=4-1.2=4.6-2.4
X=2.8 =2.2
师:谈谈你觉得解方程过程中有什么要提醒大家注意的?
生:注意等式性质的正确运用!注意解方程时的格式!
练习四:看图列方程并求解
五、课堂总结
师:我们这节课学习了什么?和大家来分享下!
板书设计:
解方程(含有加法或减法)等式性质解:X+3-3 =9-解方程(过程)学生板演天平贴图
X=6 ?解(值)检验:方程左边=x+3
=6+3
=9
=方程右边
所以,x=6是方程的解。
解方程教案6
一、教学目标:
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
二、课时安排:
1课时
三、教学重点:
能用等式的性质解简单的方程。
四、教学难点:
了解等式的性质。
五、教学过程
(一)导入新课
故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的'?
(板书:大象的体重=石头的重量)
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课
探究一:学习等式性质
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=12 23+x=45
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x – 19 = 2
(2)x - 12.3 = 3.8
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
板书设计
X+5=7 x-5= 7
解:X+5-5=7-5解:x-5+5=7+5
X=2 x=12
等式的两边同时加上或者减去同一个数,等式仍然成立。
七、作业布置
课本69页5、6题
八、教学反思
解方程教案7
教学目标
(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
(2)初步理解等式的基本性质,能用等式的性质解简易方程。
(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
(4)重视良好学 教学重、难点:(1) “方程的解”和“解方程”之间的联系和区别。 (2)利用天平平衡的道理理解比较简单的方程的方法。
教学过程
一.揭示课题,复 师:(出示课件)老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?生:(100+X)克
师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)
师:请你根据图意列一个方程。生:100+X=250(课件显示:100+X=250)
师:这个方程怎么解呢?就是我们今天要学 二.探究新知,理解归纳
(1)概念教学:认识“方程的解”和“解方程”的两个概念
师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。
生1:我有办法,可以用250-100=150,所以X=150.
生2:我有办法,因为100+150=250,所以X=150
生3:老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150师:黎明同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。
生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。
师:你能根据操作过程说出等式吗?
生:100+X-100=250-100
(课件显示:100+X-100=250-100)
师:这时天平表示未知数X的值是多少?生:X=150(课件显示:X=150)
师:是的,黎明同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。把掌声送给他。
师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。师:(课件显示X=150的)指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的.解)
师:100+X=250 100+X-100=250-100说:“这是求方程的解的过程,叫解方程。
师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)
师:同时还要注意“=”对齐。师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。
师:你们怎么理解这两个概念的? (学生独立思考,再在小组内交流。)
师:谁来说说你想法?
生1:“解方程”是指演算过程
生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。
师:“方程的解”和“解方程”的两个解有什么不同?
生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。
[设计意图:通过自主学精神。]
(2)教学例1。
师:要是老师出一个方程,你会求这个方程的解吗?
生:会。
师:请自学第58页的例1的有关内容。
[学生独立学 师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。
生:X+3=9(板书:X+3=9)
师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。师:怎样操作才使天平的左边只剩X,而天平保持平衡。
生:天平左右两边同时拿走3个球,使天平左边只剩X,天平保持平衡。(教师随着学生的回答演示课件)
师:根据操作过程说出等式?
生:X+3-3=9-3(板书:X+3-3=9-3)
师:这时天平表示X的值是多少?生:X=6(板书:X=6)
师:方程左右两边为什么同时减3?
生1:使方程左右两边只剩X。
生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。
师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。
师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?生:验算。
师:对了,验算方法是什么?
生:将X=6代入原方程,看方程的左边是否等于方程的右边。
(板书:验算:方程的左边=6+3=9方程的右边=9
方程的左边=方程的右边所以,X=6是方程的解。)
师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的 解方程:3x=18?
[学生独立思考,再在小组内交流。]
汇报交流,指生说,然后课件演示。
方程两边同时除以一个不等于0的数,左右两边仍然相等。
做一做:
身高问题
小明去年的身高+比去年长高的8cm=今年的身高
小明今年的身高-小明去年的身高=8cm
小明今年的身高-8cm=小明去年的身高
小红高165cm,比小华高10cm,小华高多少cm?
我们用桶接水接了30分钟水,一共接了1.8KG,每分钟接水多少克?
三、巩固应用
1、填空。
(1)使方程左右两边相等的( )叫做方程的解。
(2)求方程的解的过程叫做( )。
(3)比x多5的数是10。列方程为( )
(4)8与x的和是56。方程为( )
(5)比x少1.06的数是21.5。列方程为( )。
2、你能说出下列方程的解是多少吗?
X+19=21 x-24=15
5x=10 x÷2=4
3、用含有字母的式子表示下列数量关系。
(1).比x多3的数。
(2).X的1.5倍。
(3).每枝铅笔x元,买30枝铅笔需要多少钱?
(4).小明13岁,比小红小x岁,小红多少岁?
4、练小结:解含有加法方程的步骤。(口述过程)
四、拓展延伸。
1、挑战501 -- 502
五年级参加科技小组的人数是34人,比参加文艺小组的人数的2倍少6人,参加文艺小组人数有多少人?(写出数量关系式,列方程解)
师:看来,解加法方程同学们掌握得很好,老师得提高一点难度,敢挑战吗?
生:敢。
师:谁愿意读读这个方程? [学生都争着读这个方程,可激烈了]
师:这是一个含有减法的方程,你能根据解加法方程的步骤,尝试完成。
(指名王欣同学到黑板板演,其他同学在单行纸完成) [学生试着解方程并进行口头验算] 2、集体交流、评价、明确方法。
师:王欣同学做对了吗?生:对。
师:方程左右两边为什么同时加几?
生:方程左右两边同时加6,使方程左边只剩2X,方程左右两边相等......(由板演
王欣同学面向大家回答)
3 、提炼升华
师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)
生:解方程的步骤:
a)先写“解:”。
b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。
c)求出X的值。
d)验算。
4、全课小结,评价深化
通过今天的学 以小组为单位自评或互评课堂表现,发扬优点、改正缺点。
对老师的表现进行评价。
[设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学总结失败原因,发扬成功经验,培养良好的学习习惯。]
[板书设计]解方程例1:书本图X+3=9验算:X-2=15解:X+3-3 =9-3方程左边= 6+3=9解:X-2+2=15+2 X=6方程右边= 9 X=17方程左边=方程右边所以,X=6是方程的解。
解方程教案8
教学目标
1.会用加减法解一般地二元一次方程组。
2.进一步理解解方程组的消元思想,渗透转化思想。
3.增强克服困难的勇力,提高学习兴趣。
教学重点
把方程组变形后用加减法消元。
教学难点
根据方程组特点对方程组变形。
教学过程
一、复习引入
用加减消元法解方程组。
二、新课。
1.思考如何解方程组(用加减法)。
先观察方程组中每个方程x的`系数,y的系数,是否有一个相等。或互为相反数?
能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。
学生解方程组。
2.例1.解方程组
思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?
学生讨论,小组合作解方程组。
提问:用加减消元法解方程组有哪些基本步骤?
三、练习。
1.p40练习题(3)、(5)、(6)。
2.分别用加减法,代入法解方程组。
四、小结。
解二元一次方程组的加减法,代入法有何异同?
五、作业。
p33.习题2.2a组第2题(3)~(6)。
b组第1题。
选作:阅读信息时代小窗口,高斯消去法。
后记:
解方程教案9
用含有两个相同字母的式子表示数量关系及解方程
一、教学内容:
课本105页-106页的内容及相应练习。
二、教学目标:
教养目标:使学生通过实例,根据运算的意义,掌握两个相同字母相加减的运算;学会解带有两个相同字母的方程,为用方程解应用题打下基础。
教育目标:通过学习,从而拥有热爱科学,不畏困难、学好基础知识的精神。
发展目标:学会在讨论和交流中探究掌握知识,学会初步的集合、对应等数学思想。
三、教学重点、教学难点:
重点:借助插图,从直观上理解ax±bx=(a±b)x的计算方法及方程的解法。
难点:熟练计算ax±bx,尤其是当b=1时的计算方法。
四、教学准备:
多媒体课件
五、教学过程:
一、导入。
情景:20xx年10月15,中国航天飞行第一人杨利伟带来了成功回归的信息,你的心情怎么样?你也想到太空去看看吗?今天我们就一起出发到太空遨游!
1、出示:一个工地用汽车运土,每辆车运5吨,一天上午运4车,下午运3车,这一天共运土多少吨?
分析题意,学生解答后出示两种解法:5×(4+3) 5×4+5×3
2、导入新课。
情景:飞船升空,布置任务1。
出示学习目标1:学习用含有两个相同的字母的式子表示的数量关系及解简易方程。板书课题。
二、探究新知:
1、教学例5。
出示例5改编题:本次任务需要用太空车运送外星泥土,每辆车运x吨,一天上午运4车,下午运3车,这一天共运土多少吨?
(1)小组合作交流:(出示讨论提纲)
A、每车运土x吨,怎样求上午运土多少吨?下午运土多少吨?
B、怎样求运土的总吨数?还可以怎样求?
课件出示:4x+3x (4+3)x
个别提问:为什么可以列出(4+3)x?先求4+3,求出什么?
(2)4x+3x和(4+3)x有什么关系?这实际应用了什么运算定律?4x表示几个x,3x表示几个x?(4+3)x实际就是几个x?所以这个式子的结果就是7x。
(3)想一想,如果把问题改成上午比下午多运多少吨?应怎样列式?
同位讨论:4x-3x的结果是多少,为什么?1x通常怎样表示?
(4)师小结:当碰到有两个相同字母的式子,我们可以根据乘法分配律把公因数提取,并把不是公因数的数字相加减,从而算出结果。
(5)完成105页做一做。
3、教学例6。
情景:出示任务2。出示例6。
(1) 小组讨论:这是个含有两个相同字母的方程。第一步你你该怎样解答?
(2) 你能把它转化为简单的方程吗?
(3) 学生发表意见后板书解题过程,提醒学生注意格式,全班口头检验。
(4) 完成106页做一做。
(5) 小结:解带有两个相同字母的方程,我们可以根据乘法分配律,将相同因数提取,不同因数相加减,从而转化成最简单的方程解答。
(6) 反馈练习:判断题:b+0.1b=0.1b吗?5x-x=5吗?
三、巩固练习。
情景:看到同伴被外星人抓去,你能闯三关把他们救出来吗?
练习1:书本第107页第3题。
练习2:书本第107页第4题。
读题,分析题意:
成人有多少人?(x人)儿童有多少个x个人?共80人是什么意思?
练习3:书本第108页第6题(2)
题目要求列方程解答,第一步要先怎样做?解设什么是x?
四、小组竞赛。
情景:你们所掌握的数学知识真让我佩服,欢迎地球的朋友们一起来探索宇宙的奥秘,宇宙中含有无数美丽的.恒星,如果谁最快能帮助我解决下面的题目,我就把其中的一颗星星送给你们,努力呀!
1、小组合作完成书本108页第7题,先思考应怎样做?让最快想到方法的同学先讲讲解题方法。最快完成的同学切换成投影方式奖星星。
2、小组合作完成108页第10题。把答案贴到展示板上,如时间不够可下课时让同学自己评评哪一组的方程列得快、列得好。能答对的小组老师也每人送他一颗星星。
五、总结。
1、这节课你有什么收获?你还想利用方程来解决什么问题呢?
2、你为什么能看到这美好的太空画面,如果人类科技落后,能看到吗?你知道吗,数学中的方程是解决科学难题的基本工具,你想把这工具掌握在手里吗?希望同学们在五彩缤纷的未来中能亲眼看到真正的太空,到时候再给虞老师讲讲你的感受,可以吗?有信心吗?
解方程教案10
一、目的要求
使学生会用移项解方程。
二、内容分析
从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。
x=a的形式有如下特点:
(1)没有分母;
(2)没有括号;
(3)未知项在方程的一边,已知项在方程的另一边;
(4)没有同类项;
(5)未知数的系数是1。
在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。
根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。
解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。
用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。
如解方程 7x-2=6x-4
时,用移项可直接得到 7x-6x=4+2。
而用等式性质1,一般要用两次:
(1)两边都减去6x; (2)两边都加上2。
因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程当中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。
三、教学过程
复习提问:
(1)叙述等式的性质。
(2)什么叫做方程的解?什么叫做解方程?
新课讲解:
1.利用等式性质1可以解一些方程。例如,方程 x-7=5
的两边都加上7,就可以得到 x=5+7,
x=12。
又如方程 7x=6x-4
的两边都减去6x,就可以得到 7x-6x=-4,
x=-4。
然后问学生如何用等式性质1解下列方程 3x-2=2x+1。
2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于
也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。
3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程。
利用移项解前面提到的方程 3x-2=2x+l
解:移项,得 3x-2x=1+2。①
合并,得 x=3。
检验:把x-3分别代入原方程的左边和右边,得
左边=3×3-2=7, 右边=2×3+1=7, 左边=右边,
所以x=3是原方程的解。
在上面解的`过程当中,由原方程①的移项是指:
(l)方程左边的-2,改变符号后,移到方程的右边;
(2)方程右边的2x,改变符号后,移到方程的左边。
在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。
课堂练习:教科书第73页 练习
课堂小结:
1.解方程需要把方程中的项从一边移到另一边,移项要变号。
2.检验要把数分别代入原方程的左边和右边。
四、课外作业
习题2。1 P73 复习巩固
解方程教案11
教学目标
1、会正确找出一元一次方程中存在的相等关系
2、通过列方程解应用题,提高学生分析问题与解决问题的能力
重点、难点、关键点
重点:找出应用题中存在的相等关系
难点:正确分析应用题中的条件
关键:理解题意,并能正确找出应用题中的量与量之间的关系
教 学 过 程
时间分配
1、列一元一次方程解应用题题的步骤
2、例题探究
师:列一元一次方程解应用题的'步骤有哪些?
师:出示例题
已知某电视机厂生产 三种不同型号的电视 机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,应用题,初中数学教案《应用题》。某商场根据市场调查花9万元从该厂购进两种不同型号的电视机50台。请你分析一下是哪两种型号的电视机?
(教师引导,由学生自己解题过程)
生:思考议论回答
找等量关系
设未知数
列一元一次方程
解方程
写出答案
生:讨论
该问题需要分类讨论,有三种可能的情况
可能购买的是甲、乙两种型号的电视机,也可 能是乙丙或甲丙。
8分
20分
A组:
16个蓝球队进行循环比赛,每个队赢一场得2分,输一场得1分,比赛弃权得0分。某队参加了循环赛中的15场比赛,共得26分。这个队赢几场?输几场?
B组:
一列火车长250米,速度为60千米/时,一越野车其车速为90千米/时,当火车行驶时,越野车与火车同向而行,由列国车车尾追至车头,需要多长时间 ?
教后札记
解方程教案12
教学目标:
1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。
2、利用探索发现的等式的性质,解决简单的方程。
3、经历了从生活情境的方程模型的建构过程。
4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。
教学重难点:
重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的.方程。
难点:推导等式性质(一)。
教学准备:
一架天平、课件及班班通
教学过程:
一、创设情境,以情激趣
师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?
学生讨论纷纷。
师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?
二、运用教具,探究新知
(一)等式两边都加上一个数
1、课件出示天平
怎样看出天平平衡?如果天平平衡,则说明什么?
学生回答。
2、出示摆有砝码的天平
操作、演示、讨论、板书:
5=5 5+2=5+2
X=10 X+5=15
观察等式,发现什么规律?
3、探索规律
初次感知:等式两边都加上同一个数,等式仍然成立。
再次感知:举例验证。
(二)等式两边都减去同一个数
观察课件,你又发现了什么?
学生汇报师板书:
X+2=10
X+2-2=10-2
X =8
(三)运用规律,解方程
三、巩固练习
1、完成课本68页“练一练”第2题
先说出数量关系,再列式解答。
2、小组合作完成69页“练一练”第3题。
完成后汇报,集体订正。
四、课堂小结
这节课你学到了什么?学生交流总结。
板书设计: 解方程(一)
X+2=10
解: X+2-2=10-2 ( 方程两边都减去2)
X =8
解方程教案13
教学内容:
第8页第5-10题
教学目标:
1、进一步理解并掌握如ax±b=c、ax±bx=c的方程的解法,会列上述方程解决两步计算的实际问题。
2、在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。
3、在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流,自觉检验等习惯;获得一些成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。
教学重点、难点:
经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。
教学对策:
提供基本题和拓展题,让不同程度的学生在原有基础上得到不同的发展。
教学准备:
投影片或小黑板
教学过程:
一、基本练习
1、解方程。
8.2x-7.4=9 2x+52x=162
32+6x=50 10.5x-7.5x=0.9
学生独立解答,投影四位学生的解题过程,教师及时讲评,学生集体订正。
2、看图列方程并求出x。(第8页第5题)
(图略)学生独立思考后列方程解答,然后交流,同桌之间互相检查解题情况,互相评价。
3、列方程解决实际问题。(第8页第6-10题)
(1)第6题。
学生独立思考数量关系列出方程,组织学生交流自己的思考过程,教师及时评价。
(2)第7、8、10题。
学生独立思考并列出方程,指名学生说说数量关系和列出的方程,教师及时评价。
将第7、8、10题与第6题进行比较,请学生说说两题的分析和解题过程有什么不同。
(3)第9题。
提问:根据题中提供的信息,你想到了哪些数量关系?你觉得用什么方法解决这个问题较简便?
鼓励学生用不同的方法来解决这一问题,然后请学生交流自己的想法,让学生感受方程的'思想方法及价值。
二、拓展练习
1、小明的储蓄罐里一共有87.5元,都是1元和5角的硬币。如果1元硬币的枚数是5角硬币的3倍。1元和5角的硬币各有多少枚?
学生认真读题后思考题中的数量关系,请学生交流。
在理解数量关系后组织学生正确列出方程并解答。
教师巡视学生练习情况,结合学生实际及时讲评。
2、甲、乙两车队共有汽车180辆,因运输任务需要从甲队调30辆支援乙队,使乙队的汽车正好是甲队的2倍。问甲、乙两队原有汽车各多少辆?
启发学生:两个车队的汽车总数没有发生变化,因此数量关系式为:甲车队汽车辆数+乙车队汽车辆数=180辆,然后再思考怎样用含有字母的式子来表示这两个未知的数量。
学生独立解答后组织交流,教师及时评价学生交流情况。
3、书上第8页的“思考题”。
在学生认真读题的基础上,教师引导学生理解“取了若干次后,红球正好取完,白球还有10个”,说明取出的红球比白球多10个。根据这样的数量关系来列出方程,解决本题。
三、全课总结
同桌之间互相检查本课练习情况,互相评价学习情况,再请几位学生全班交流。
四、布置作业
第8页第5、6、8、9题。
课后反思:
今天的练习课中,我主要借助教材上提供的一些实际问题和补充了一些练习题,想通过这些练习,帮助学生进一步提高分析数量关系的能力,能正确、熟练地运用列方程的方法来解决一些实际问题。我还参考了同一年级两位老师的“课前思考”,在课中根据学生实际情况对教学活动稍做调整,适当降低了练习难度,尽可能考虑到全体学生的发展。
练习课上,我也选用了高教导设计的一组有关行程问题的对比题,课中注意了对数量关系的分析,给学生较多的时间来思考、分析和交流。课堂上学习效果还不错,所以,我将教材上第8页的第5、6、7、8题作为课内作业,让学生独立完成。批完两个班学生的作业后,我发现自己对学生学习情况还没有摸透,特别是这学期刚接手的六二班。六二班中有接近1/3的学生在列方程解第5题时出现错误,分析错误原因主要是对于三角形面积计算公式和长方形周长计算公式已遗忘,列出错误的方程,因而造成错误,另一原因是在解这两个稍复杂的方程时,有些学生解方程有困难,胡乱计算。这两题虽然是有关几何图形面积和周长的计算,但由于数量关系式的不同,也可以列出不同的方程。而且有些方程可能较简单,更便于解答。看来,这一题还得重视起来,明天的练习课上,我要再组织学生来解答,更好地掌握用列方程的方法来解决有关几何图形的问题。
解方程教案14
教学目标:
1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。
2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。
3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。
4、培养学生规范书写和自觉检验的好习惯。
教学重点:
1、 对等式的基本性质一的理解和运用。
2、 掌握解形如x+a=b的方程的依据、步骤和书写格式。
3、 能较为熟练地运用形如x+a=b的方程解决简单的实际问题。
教学难点:
1、 掌握解形如x+a=b的方程的依据、步骤和书写格式。
2、 较为熟练地运用形如x+a=b的方程解决简单的实际问题。
教学过程:
教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的`是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860
后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。
在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。
这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。
教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。
最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。
模式方法:观察――实验――讨论――交流――概括结论
作业设计:自主练习1-3题。
讨论要点
1、 教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。
2、 教学时,要关注学生的算术思维向方程思维的转变。
3、 在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。
4、 教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。
活动总结
本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。
解方程教案15
教学内容
解方程:教材P69例4、例5。
教学目标
1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。
2.进一步掌握解方程的书写格式和写法。
3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。
教学重点
理解在解方程过程中,把一个式子看作一个整体。
教学难点
理解解方程的方法。
教学过程
一、导入新课
我们上节课学习了解方程,这节课我们来继续学习。
二、新课教学
1.教学例4。
师:(出示教材第69页例4情境图)你看到了什么?
生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。
师:你能根据图列一个方程吗?
生:3x+4=40。
师:你是怎么想的?
生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。
师:说得好,你能解这个方程吗?
学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的'困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)
师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?
生:先算出3个铅笔盒一共多少支,再加上外面的4支。
师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。
让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。
2.教学例5。
师:(出示教材第69页例5)你能够解这个方程吗?
生1:我们可以参照例4的方法,先把x-16看作一个整体。
学生解方程得x=20。
生2:我们也可以用运算定律来解。
师:2x-32=8运用了什么运算定律?
生:运用了乘法分配律。然后把2x
看作一个整体。
学生解方程得x=20。
师:你的解法正确吗?你如何检验方程是否正确?
生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。
三、巩固练习
教材第69页“做一做”第1、2题。
第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。
这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。
四、课堂小结
1.在解较复杂的方程时,可以把一个式子看作一个整体来解。
2.在解方程时,可以运用运算定律来解。
五、布置作业
教材第71页“练习十五”第6、8、9.题。
【解方程教案】相关文章:
解方程教案04-02
初中数学解方程教案12-31
《解方程》教学反思04-07
《解方程》的教学反思04-07
解方程教学设计04-07
解方程教学反思02-25
数学解方程教学反思04-12
《解方程二》教学反思04-07
解方程教学设计15篇05-14
解方程教学设计(15篇)06-01